1 research outputs found

    Stochastic and complex dynamics in mesoscopic brain networks

    Get PDF
    The aim of this thesis is to deepen into the understanding of the mechanisms responsible for the generation of complex and stochastic dynamics, as well as emerging phenomena, in the human brain. We study typical features from the mesoscopic scale, i.e., the scale in which the dynamics is given by the activity of thousands or even millions of neurons. At this scale the synchronous activity of large neuronal populations gives rise to collective oscillations of the average voltage potential. These oscillations can easily be recorded using electroencephalography devices (EEG) or measuring the Local Field Potentials (LFPs). In Chapter 5 we show how the communication between two cortical columns (mesoscopic structures) can be mediated efficiently by a microscopic neural network. We use the synchronization of both cortical columns as a probe to ensure that an effective communication is established between the three neural structures. Our results indicate that there are certain dynamical regimes from the microscopic neural network that favor the correct communication between the cortical columns: therefore, if the LFP frequency of the neural network is of around 40Hz, the synchronization between the cortical columns is more robust compared to the situation in which the neural network oscillates at a lower frequency (10Hz). However, microscopic topological characteristics of the network also influence communication, being a small-world structure the one that best promotes the synchronization of the cortical columns. Finally, this Chapter shows how the mediation exerted by the neural network cannot be substituted by the average of its activity, that is, the dynamic properties of the microscopic neural network are essential for the proper transmission of information between all neural structures. The oscillatory brain electrical activity is largely dependent on the interplay between excitation and inhibition. In Chapter 6 we study how groups of cortical columns show complex patterns of cortical excitation and inhibition taking into account their topological features and the strength of their couplings. These cortical columns segregate between those dominated by excitation and those dominated by inhibition, affecting the synchronization properties of networks of cortical columns. In Chapter 7 we study a dynamic regime by which complex patterns of synchronization between chaotic oscillators appear spontaneously in a network. We show what conditions must a set of coupled dynamical systems fulfill in order to display heterogeneity in synchronization. Therefore, our results are related to the complex phenomenon of synchronization in the brain, which is a focus of study nowadays. Finally, in Chapter 8 we study the ability of the brain to compute and process information. The novelty here is our use of complex synchronization in the brain in order to implement basic elements of Boolean computation. In this way, we show that the partial synchronization of the oscillations in the brain establishes a code in terms of synchronization / non-synchronization (1/0, respectively), and thus all simple Boolean functions can be implemented (AND, OR, XOR, etc.). We also show that complex Boolean functions, such as a flip-flop memory, can be constructed in terms of states of dynamic synchronization of brain oscillations.L'objectiu d'aquesta Tesi 茅s aprofundir en la comprensi贸 dels mecanismes responsables de la generaci贸 de din脿mica complexa i estoc脿stica, aix铆 com de fen貌mens emergents, en el cervell hum脿. Estudiem la fenomenologia caracter铆stica de l'escala mesosc貌pica, 茅s a dir, aquella en la que la din脿mica caracter铆stica ve donada per l'activitat de milers de neurones. En aquesta escala l'activitat s铆ncrona de grans poblacions neuronals d贸na lloc a un fenomen col路lectiu pel qual es produeixen oscil路lacions del seu potencial mitj脿. Aquestes oscil路lacions poden ser f脿cilment enregistrades mitjan莽ant aparells d'electroencefalograma (EEG) o enregistradors de Potencials de Camp Local (LFP). En el Cap铆tol 5 mostrem com la comunicaci贸 entre dos columnes corticals (estructures mesosc貌piques) pot ser condu茂da de forma eficient per una xarxa neuronal microsc貌pica. De fet, emprem la sincronitzaci贸 de les dues columnes corticals per comprovar que s'ha establert una comunicaci贸 efectiva entre les tres estructures neuronals. Els resultats indiquen que hi ha r猫gims din脿mics de la xarxa neuronal microsc貌pica que afavoreixen la correcta comunicaci贸 entre les columnes corticals: si la freq眉猫ncia t铆pica de LFP a la xarxa neuronal est脿 al voltant dels 40Hz la sincronitzaci贸 entre les columnes corticals 茅s m茅s robusta que a una menor freq眉猫ncia (10Hz). La topologia de la xarxa microsc貌pica tamb茅 influeix en la comunicaci贸, essent una estructura de tipus m贸n petit (small-world) la que m茅s afavoreix la sincronitzaci贸. Finalment, la mediaci贸 de xarxa neuronal no pot ser substitu茂da per la mitjana de la seva activitat, 茅s a dir, les propietats din脿miques microsc貌piques s贸n imprescindibles per a la correcta transmissi贸 d'informaci贸 entre totes les escales cerebrals. L'activitat el猫ctrica oscil路lat貌ria cerebral ve donada en gran mesura per la interacci贸 entre excitaci贸 i inhibici贸 neuronal. En el Cap铆tol 6 estudiem com grups de columnes corticals mostren patrons complexos d'excitaci贸 i inhibici贸 segons quina sigui la seva topologia i d'acoblament. D'aquesta manera les columnes corticals se segreguen entre aquelles dominades per l'excitaci贸 i aquelles dominades per la inhibici贸, influint en les capacitats de sincronitzaci贸 de xarxes de columnes corticals. En el Cap铆tol 7 estudiem un r猫gim din脿mic segons el qual patrons complexos de sincronitzaci贸 apareixen espont脿niament en xarxes d'oscil路ladors ca貌tics. Mostrem quines condicions s'han de donar en un conjunt de sistemes din脿mics acoblats per tal de mostrar heterogene茂tat en la sincronitzaci贸, 茅s a dir, coexist猫ncia de sincronitzacions. D'aquesta manera relacionem els nostres resultats amb el fenomen de sincronitzaci贸 complexa en el cervell. Finalment, en el Cap铆tol 8 estudiem com el cervell computa i processa informaci贸. La novetat aqu铆 茅s l'煤s que fem de la sincronitzaci贸 complexa de columnes corticals per tal d'implementar elements b脿sics de computaci贸 Booleana. Mostrem com la sincronitzaci贸 parcial de les oscil路lacions cerebrals estableix un codi neuronal en termes de sincronitzaci贸/no sincronitzaci贸 (1/0, respectivament) amb el qual totes les funcions Booleanes simples poden 茅sser implementades (AND, OR, XOR, etc). Mostrem, tamb茅, com emprant xarxes mesosc貌piques extenses les capacitats de computaci贸 creixen proporcionalment. Aix铆 funcions Booleanes complexes, com una mem貌ria del tipus flip-flop, pot 茅sser constru茂da en termes d'estats de sincronitzaci贸 din脿mica d'oscil路lacions cerebrals.Postprint (published version
    corecore